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Dynamic behaviour of a suspension of superconducting 
particles in an alternating magnetic field 
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Department oiPhysics, Building W 81 S. Eindhoven University, PO Box 513,5600 MB, 
Eindhoven, The Netherlands 

Received 13 May 1991 

Abstract. We study the behaviour of a dilute suspension oi single crystal high-T, supercon- 
ducting particles in an alternaring magnetic field He = Ho cos WT oi intermediate amplitude 
value Hv For the case of the inertia term being neglected and field frequency w < 1 MHz 
the analytical solution of the nonlinear equation of rotational motion has been obtained. It 
is shown that particles rotation e(r) is squeezed in one oithe zones ((z/Z)n. (n/Z)(n + I)), 
n = 0.21,. . . , O(r) and magnetization M(r)  are step-like functions of time. 

1. Introduction 

Recently we have proposed a new class of media-suspensions of high-T, supercon- 
ducting particles (SSP) (mean diameter d = 1 pm) dispersed in a solvent at T < T, [1,2]. 
Such media can possess some unusual properties, e.g. an anomalously high diamagnetic 
susceptibility, magnetization curve that crosses the M = 0 axis (i.e. the behaviour of 
SSP can be either paramagnetic or diamagnetic depending on applied magnetic field 
intensity), etc. 

The technological aspects of making the particles for a sse were discussed in [3]. The 
effective susceptibility of chain and disordered structures of particles in a ‘composite 
suspension’ [l] (a SSP writh a ferrofluid [4] as a solvent) were calculated by Horvath and 
Kopcansky [5 ] .  

In all the above mentioned papers the internal structure of high-T, superconducting 
particles was not taken into account. Meantime it is well known that properties of 
ceramic and single crystal samples differ essentially. In this paper we shall consider SSP 
with a disperse phase consisting of single crystal high-T, particles. In this case an 
important feature of particles will be a rather high uniaxial anisotropy of the supercon- 
ducting state parameters: penetration depth I ,  coherence length 5, lower and upper 
critical magnetic fields H,, and Ha. For example, for YBa,Cu,O,-, (a ‘1-2-3’ material) 
the values of parameters in the Cu-0 plane (nb plane of a primitive cell) differ from their 
values along the c axis perpendicular to ab: 5, = 5.6 A, Eo,b = 28 A, I ,  = 19.6 x 10, A, 
Io,b = 3.9 X lo2.& [6] .  

t Permanent address: Institute for HighTemperaturesUSSR Academy of Sciences, Izhorskaya Street 13/19, 
Moscow, 127412, USSR. 
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Due to the strong uniaxial anisotropy the magnetic moment of a particle in an 
external magnetic field H, is not antiparallel to He when He > H,, (as in the case of 
isotropic superconductors), and its magnitude depends on the angle 0 between He and 
the c axis. When He is an alternating field this anisotropy results in a specific nonlinear 
dynamic behaviour of dispersed particles and consequently of the SSP magnetization M. 
The purpose of this work is to study the behaviour of 0 and M in an alternating magnetic 
field 

where the amplitude Ho has an intermediate value: 

He = Ho cos wr (1.1) 

We note that in a cycle of the field the superconducting material alternately occurs 
in the Abrikosov vortex phase and in the Meissner phase. The latter occurs when o ~ r  is 
in the vicinityofpointsn/2and3n/2;due to theconstraint (1.2) theseintervalsareshort 
compared to the intervals where the vortex phase exists. The dynamic behaviour of a 
particle will  be different for these time intervals. 

In section 2 we briefly review the thermodynamic properties of anisotropic super- 
conductors within the frame ofthe London theoryandderive theexpression for magnetic 
energy of a spherical SSP particle, placed in an intermediate magnetic field He. Section 3 
is devoted to the analysis of the dynamic behaviour of a particle and its magnetization 
inthefield(l.1). 

2. Magnetic energy of a SSP particle 

Due to the high value of the Ginzburg-Landau parameter K = A/E a 1, the London 
theory is applicable in a wide domain of fields H ,  4 Ha. The anisotropy of a supercon- 
ductor can be taken into account by introducing the effective mass tensor Mjk of Cooper 
pairs [7, 81 (for '1-2-3' material in the principal axes M, = Mbb = 8 electron masses, 
M,, = 200 electron masses [6]). 

The Helmholtz free energy of a particle (per unit length in the direction of vortices) 
is: 

where h(x ,  y )  is the local magnetic field, dxdy is an element of an area normal to 
the vortex axis z ,  mlh = M , d M ,  # = (M,MbbM,)'~' is the 'average mass', I =  (Mc2/ 
4nn,e2)'I2 the 'average penetration depth' (n, is the number density of superconducting 
electrons). 

In order to make use of equation (2.1) one must express the values of mass tensor 
mrk in the vortex frame in terms of its values in the crystal frame. The vortex frame ( x ,  
y ,  z )  is obtained by a rotation e of the crystal frame (a ,  6, c )  around the 6 axis (which 
coincides with they axis). So 0 is the angle between the c axis of a crystal and the vortex 
axis (figure 1). The tensor analysis formulae read: 

m ,  = m ,  cos2 e + m3 sin2 e mxy = myr = 0 

myy = ml m,, = m ,  sin2 e + m3 cos2 e (2.2) 
m,, = ( m ,  - m 3 )  sin $cos 8. 
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Figure 1. Mutual orientation of the vortex frame 
(x. y, L) and the crystal frame (a, b ,  C) of a single 
crystal SSP particle. B is the magnetic induction 
vector. 

Figure 2. Magnetization of a single crystal SSP 
particle. In the vortex phase M contains a com- 
ponent M. normal to the vortex axis. 

Here we have used the notations: m ,  = m, = mbbr m3 = m,. Varying Fwith respect to 

In view of the periodicity of the vortex lattice it is natural to use the Fourier trans- 
h(x, y) one can obtain the anisotropic London equations [8]. 

formation 

h, = nL h(x, y )  exp(-iG er) du dy (2.3) 

where nL is the vortex density (per unit area), r =  (x. y ) .  G are the reciprocal lattice 
vectors; integration is over a primitive cell. Substitution of the London equations into 
(2.1) and use of the Fourier transformation (2.3) gives the following result for the free 
energy density [9]: 

B2 
8= c 

F =  -E (1 + i2mzzG2)[(l + i2m,,G: + i2m,G:)(1 + %2m,G2)]'1 (2.4) 

where B = @flL is the magnetic induction, Go the flux quantum; summation is over the 
reciprocal lattice vectors. If He is an intermediate field, i.e. H,, a He Hc2, then the 
average vortex spacing L satisfies E L 4 x. We introduce dimensionless reciprocal 
lattice vectors g = LG and expand the free energy in powers of a small parameter 

E = (L/X)2 

and obtain: 

Replacing summation by integration and introducing a cutoff at g,,, = b L / E  in the 
logarithmically divergent integral (the Fourier componentsrelative to the interior of the 
hard core must be excluded-a usual procedure for type 2 superconductors [lo]), we 
obtain: 

8nF= B2 + (@o/4ni2)(mlB2 + m3B:)'12 ln(cHo/B). (2.7) 
Here B,  = B sin 0,  B, = B cos 0 are the projections of the magnetic induction vectorB 
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on the crystal axes, parameter 5 depends on the type of the vortex lattice. The quantity 
q40/4.zx2 is of the order of H,, and in the field domain under consideration is small with 
respect to both B and H .  Therefore we can replaceB under the In sign in equation (2 .7)  
by He and obtain: 

V I  Kalikmanou and P P I  M Schram 

8nF= B2 + 2H*(mlB:  + m3B:)' /2  (2.8) 

H* = (q40/4~12) In([Hc2/He).  (2.9) 
Using the thermodynamic relation H = 4 n  iJF/JB we can derive magnetic field H inside 
the particle: 

H .  = B, + H* m ,  sin 6/G@j 
~~ 

H ,  = B,  + H* m, cos e/- (2.10) 

(2.11) 

where 

m ( 6 )  = m l  sin2 6 -F m? cos2 e. 
Then the reversible magnetization M = ( B  - H ) / 4 n  can be easily obtained: 

M, = - ( 1 / 4 z ) H * m ,  sin 61- M ,  = - ( 1 / 4 n ) H * m ,  cos e/-. 
(2.12) 

In general, vector M is not directed along the vortex axis: M = M, + M,. It has a 
component M, normal to it. The specific feature of this problem is also the dependence 
of a particle magnetic moment on the angle between field and the crystalline axis c. 

In the field domain under consideration we can neglect demagnetization effects and 
therefore magnetic energy of a spherical particle of radius R can be expressed in the 
following form: 

U =  - M . H c 4 ~ R 3 .  (2.13) 

In the same approximation we can consider that the direction of vortices ( B )  coincides 
with H, (figure 2) .  Then equation (2.13) reads: 

U = & R 3 H " H , G @ j .  (2.14) 

In the field domain H ,  s H,, the situation is different: M is always antiparallel to H, 

(2.15) 

(2.16) 

where D is the demagnetization factor ( D  = I /3  for asphere); the magnetic energy does 
not depend on 6. 

Finally we shall consider the domain of fields slightly larger than Hc,:&lc 3 H e , .  In 
this case the vortex density nL is low, vortices are separated by more than A and only a 
few of nearest neighbours are important. For an isotropic superconductor the following 
expression for magnetic induction is valid [ 1 1 1 :  

(2.17) 

Here H = He - 4nD M is the magnetic field inside the particle. In our case in this field 
domain demagnetization effect is still important while anisotropy effect is small and we 
can approximately take it into account by substituting the mean penetration depth 1 

It can be seen that the magnetic energy minimum corresponds to 6 = 4 2 .  

and the demagnetization effect is important. In this domain 

M = - (1 /4n) l f e / (1  - D )  

U = kR3 H ? / ( l  - D)' 

B = (2q40/~Az)[ln(3q40/4nA2(H - H c 1 ) ) ] - ' .  
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instead of A in (2.17). Then using the relation B = H e  + 4n(1 - D)M we obtain the 
following transcendent equation for magnetization: 

1 -2 

W O  W O  4 n M = - -  H e  + 1 - D V'3 x*(1 - D )  [In 4 d 2 ( H ,  - 4nDM - H C 1 )  
(2.18) 

defining M as a function of He.  Now we can calculate the magnetic energy: 

U =  ( - M - H ,  + ~ z D M ~ ) ( ~ z / ~ ) R ~ .  (2.19) 

So for He 3 H,, magnetization remains approximately antiparallel to He,  its value is 
given by the solution of (2.18); therefore the magnetic energy does not depend on e as 
in the pure Meissner phase. 

3. Behaviour of a dilute SSP in an alternating magnetic field 

We consider a dilute SSP placed in an alternating magnetic field H e  = H o  cos w t ,  H,, Q 
Ho Q Ha. Neglecting interparticle interactions we shall study the behaviour of a single 
particle of the suspension. Its Lagrangean L takes the form: 

L = t r ( e y  - U (3.1) 
where I = (8/15)npp,RS is the momentum of inertia of the particle, ps its density, ' = J/ 
ar, We omitted in the Lagrangean terms connected with translational degrees of free- 
dom because they do not contribute to the rotational motion we are studying. 

The Lagrange equation of motion in the presence of viscous dissipation reads: 

18" - aulae = - 8nqR3e'. (3.2) 
The right-hand side of this equation represents the viscous torque acting on the spherical 
particle [12] ,  q being the solvent viscosity. This expression for the viscous torque isvalid 
when 

(Prol"w12q)1fiR Q 1 (3.3) 

where psolv is the solvent density. Taking into account the characteristic values of the 
parameters R - 0.1 pm, q - lo-) g/cm s, psolv 0.8 g/cm3 we obtain the limitation on 
the field frequency: 

o G 1 M I - k  

If we introduce the dimensionless time t = w t  equation (3.2) can be written as: 

1 ~ 2 0  - aulae + sn17~3we = o (3.4) 
where e = dO/dt. 

We consider the case when the inertia term in equation (3.4) can be neglected 
compared to the viscous one (the general case will be considered elsewhere). It implies 
the following inequality: 

IIo2sl Q 18nqR3w61. (3.5) 

We shall discuss its validity below. As we are interested in periodical solutions O(t) we 
shall discuss the behaviour of e for 0 s t s 2n. It was noted in section 2 that there were 
two different superconducting phases at time interval (0, h): Abrikosov vortex phase 
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and Meissner phase with the expressions for magnetic energy U given by equations 
(2.14), (2.16) and (2.19). So equation (3.2) in the dimensionless form reads: 

for I, < 1 < n - I, 

9 =  1 (Meissner phase) 

V I  Kalikmanov and P P J M Schram 

0 
& n  + t ,  <re 2n - t ,  (3.6) 

otherwise (3.7) 

Here i ,  = arc cos(^,,/^,), f ( e )  = sin2e/V1 + ( y 2  - I) cos2 e, p = 48nqw/H*H, 
~ - ' / ~ ( y *  -1); we have introduced the anisotropy coefficient y = (m3/m,) 'D > 1 
and used an obvious equality m:m3 = 1. We shall search for the solution e(f) of 
equation (3.7) and then join it with the solution 0 =constant of equation (3.6) by 
continuity. 

Analysing equation (3.7) one can see that the range of 0 values in the 0 - f plane is 
divided into zones bounded by the straight lines 0 = (n/Z)n, n = 0, +1, . , ., cor- 
responding tozerosoffunctionf(6). If(,z/2)n < e(? = 0) < n/Z(n + 1) for arbitraryn, 
then the trajectory e(t) will be totally situated in the zone ((z/Z)n,  n/Z(n + 1)) and will 
never intersect its boundaries. 

(Abrikosov phase). 
-(1/B)f(@) cos t 

Functionf(0) can be expressed in the following form: 

f (e)  = (I/y) sin ZO/A(e) (3.8) 

(3.9) 

(3.10) 

~ 

A(0) = .1/1 - (1 - l/y2) sin* B .  

b = -(l/By)[sin(Ze)/A] cos f .  

Then equation (3.7) reads: 

Taking the time derivative from both sides of equation (3.10) we find that the neglect of 
the inertia term (inequality (3.5)) results in the following condition: 

(3.11) 

It issatisfiedforH* - lo2 Gs, Ho - IO3 Gs, y - 4 - 8. Equation (3.10) has the solution: 

--_ -1n- +-In - sin1 + c 1 1 - A  1 A + l / y  
2 l + A  2y A - l / y  B y  

(3.12) 

where constant C depends on the initial conditions 0" = e(f = 0). In order to study the 
properties of the solution obtained we shall introduce a new variable 

(3.13) y = (1 - A)/(] + A). 

It follows from the definition of A(@) that 

o < y  < y ,  = ( y -  l ) / (y+ 1) < 1. (3.14) 

Substituting (3.13) into (3.12) we obtain: 

p'[(y + 1) - y ( y  - l ) ]  = a - by 

a =P(W - 1) b =p( t ) (u  + 1) p ( t )  = exp[2yC - ( 4 / 3  sin I]. (3.15) 
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Figure 3. Geometrical interpretation of equation Figure 4. Rotationof a particle. p = 4.28 x 1W2. 
(3.15). = 4.5, en = n/lo. 

A geometrical interpretation of equation (3.15) is presented in figure 3. Function 
fl  (y) = yY[(y + 1)-y(y - l ) ]  has a single minimum in the point ymln = 0 and a single 
maximum in the pointy,, = y/(y - 1) > 1. Straight linesfr(y) = a-by with different a 
and b have negative slopes and intersect they axis in one pointy = yc < 1. So for each 
value of 1 equation (3.15) has the unique solution y ( t )  E (0, y c ) .  From equation (3.13) 
we find: 

sin2 0 = [ y 2 / ( y 2  - 1)](1 - A?), 

The behaviour of 0(t) for p = 4.28 x lo-’, y = 4.5 and Bo = x/lO is shown in figure 4. 
Particle rotation is squeezed between 0 = 0 and 0 = 4 2  and represents a step-like 
function off. The particle spends most of the time in positions with k e d  0 orientations. 
Changes in orientations occur very rapidly. 

Next we consider the magnetization behaviour. Due to the fact that particles are 
considered to be independent we shall be interested in magnetization M of one arbitrary 
particle. We must distinguish between the vortex phase and the Meissner phase. 

In the Meissner phase M is antiparallel to H e  and demagnetization is important. If 
M p  is the projection of M on the direction H,(t = 0), then in accordance with equation 
(2.15): 

4xMJt) = - I H ,  cos f. 

For H ,  5 H,, the expression for M, is given by equation (2.18). In the developed vortex 
phase (Hc ,  Q H e  Q H s 2 )  the corresponding quantity can be derived from equation 
(2.12): 

4nM,(f) = kH*y*fiA[O(t)]. 

The behaviour of Mp(t) is shown in figure 5 for the same values of the parameters as used 
in figure 4. It is also a step-like function of time in the vortex phase and is nearly linear 
in the Meissner phase (due to H,, Q Ha). It should be noted that the sharp comers in 
figures 4 and 5 are not realistic. The neglected inertia term and frequency dependent 
part of the viscous torque can be expected to have a smoothing influence. 

In conclusion we have studied the behaviour of dilute SSP with single crystal high-T, 
superconducting particles in an alternating magnetic field of intermediate amplitude 
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value. For the case of the inertia term being neglected and field frequency o < 1 MHz 
the analytical solution of the nonlinear equationof rotational motion has beenobtained. 
Particles rotation e([) takes place in one of the zones ((x/2)n, (x/2)(n + l)), n = 0, 
+1, . . .. e(t) and magnetization M ( t )  are step-like functions of time. 
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